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SUMMARY

AerMet 100 steel specimens, bare and coated with 18 different corrosion preventive compounds
(CPCs), were subjected to open circuit potential (OCP) measurement and stress corrosion
cracking (SCC) test, employing rising step load method, in 3.5% NaCl solution. The CPC
coating improved the resistance to general corrosion, measured with OCP, by 1.4 ~ 28.3 times
and they were effective for 6 ~ 24 hr. It also improved the SCC resistance, measured with Kiscc
at OCP, by 3.6 ~ 4.5 times and the hydrogen embrittlement resistance, measured with Kjscc at
electrode potential Vscg =-1.2 V, by 2.4 ~ 6.5 times. Among the 18 tested CPCs, CPC ZC-010 is
most effective and persistent in prevention/mitigation of general corrosion. Carwell ARS500 and
Omega 2775 are best in that of SCC and Break Free SMX optimum in that of hydrogen

embrittlement.
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INTRODUCTION

Many metallic components of aircraft are susceptible to corrosion, including general corrosion
and localized corrosion, such as stress corrosion cracking (SCC), corrosion fatigue, pitting, etc.,
and hydrogen embrittlement. Such a material degradation by corrosion or hydrogen
embrittlement threatens the aircraft safety, adversely affects the force readiness, and increases the
maintenance burden. The yearly Navy corrosion cost amounts to $1 billion and increases as the

aircraft ages.

Extensive studies have been conducted to establish the means of preventing, retarding, and
controlling corrosion, extending service life and saving life cycle cost. One of them is the use of
corrosion preventive compound (CPC), growing among aircraft manufacturers and maintainers.
Many CPCs develop a layer of surface film that protects the metal from corrosion by reducing the
transport rate of corrosive species. Some others remove the corrosive environment from the
metal and are called “water displacing CPCs.” They also have strong penetrant properties to
allow transportation of the fluid into joints and narrow crevices. Those CPCs are classified as (1)
passivators, (2) organic CPCs, including slushing ones and pickling ones, and (3) vapor-phase
ones. Passivators are usually inorganic oxidizing substances (e.g., chromates, nitrites, or
molybdates) that passivate the metal and shift the corrosion potential several tenths volt in the
noble direction. Nonpassivating CPCs, such as the pickling ones, are usually organic substances
that have only a slight effect on the corrosion potential, changing it either in the noble or active
direction usually not more than a few milli- or centivolts. In general, the passivating CPCs reduce
corrosion rates to very low values, being more efficient in this regard than most of the
nonpassivating types. They represent, therefore, the better CPCs available for certain metal-
environment combinations. Commercial CPCs are normally mixtures of several classes of CPCs,
some of which function as anodic inhibitors and others as cathodic inhibitors. Experience has
shown that such mixtures often are more effective than CPCs used separately, evidencing
“synergism” (reference 1). However, their effectiveness and persistency have not been fully

established for aircraft components.

Some of the major studies on CPCs, reported in literature, are as follows. O’Neill and Smith
(reference 2) and Machin and Mann (reference 3) compared the fatigue lives of double-lap joints
with and without CPC in various environments and concluded that the addition of a CPC to a
joint often reduced the fatigue life of the joint. Parrish et al. (references 4 and 5) and Lynch et al.
(reference 6) reported the retardation of SCC, increasing Kiscc and decreasing SCC velocity, for
D6AC high strength low alloy steel in aqueous media by oxidizing inhibitors. Mousley
(reference 7) observed acceleration of fatigue cracking by penetrating fluids for corrosion
prevention in riveted joints of Alclad 2024-T3 alloy sheets. Verink and Das (reference 8)
screened over 200 potential CPCs to test their effectiveness of controlling hydrogen
embrittlement and SCC of 4340, 300M, 17-4 PH, HP 9-4-30, and HY 180 steels. The three final
selected CPCs were the “blocking type” ones (piperidine, piperazine, and Nalco 39L), which
reduced the hydrogen content at the fracture surface and the SCC rate and increased the Kiscc.
According to Agarwala (references 9 and 10), CPCs retarded the corrosion fatigue crack growth
in 4340 steel exposed to moist air and chloride-containing environment and the SCC of 7075-T6
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aluminum alloy in chloride-containing environment. Kim et al. (reference 11) investigated
various corrosion inhibitors, such as Na,Cr,07, Na,CrO4, Na;M0O;, and NaNO,, for their effect
on the corrosion-wear process of AISI M50 and 52100 steels in NaCl environments. They found
that the corrosion inhibitors effectively passivated the steels and decreased the corrosion
activities. Trabanelli et al. (reference 12) studied the possibility of inhibiting or delaying SCC of
AISI 304 stainless steel wires in 1 M HCI solutions by using organic additives. Some of the
organic substances, such as phenylthiourea, benzimidazole-2-thiol, and benzothiazole-2-thiol,
were found to inhibit the SCC. Trabanelli et al. (reference 13) also tested different types of
organic additives (N- and S-containing and an acetylenic derivative) as inhibitors for the
intergranular corrosion (IGC) of a sensitized AISI 304 stainless steel in 1 N sulfamic acid
solution at 70°C. The only organic substances that could inhibit the IGC were those molecules
containing a sulfur atom with one unshared lone electron pair. Shoji et al. (reference 14) found n-
hexylamine very effective for the retardation of SCC of A533B CL.1 and 304 steels in high-
temperature water. It has been shown by Hinton et al. (reference 15) that the velocity of SCC was
significantly reduced by adding a small amount of CPC to an already corrosive environment.
Khobaid (reference 16) showed that addition of a CPC to a corrosive environment reduced or
removed the deleterious effects of the environment on fatigue crack growth in aluminum. Russo
et al. (reference 17) investigated the influence of CPC on the fatigue life of aluminum one and a
half dog-bone specimens. At low applied stresses, the fatigue life was reduced, but the reduction
was only marginal at higher applied stresses. The addition of CPC reduced the amount of fretting
and changed the failure mode. The work done by Shankar et al. (reference 18) indicates that
CPCs have either a beneficial or detrimental effect on the life of a single fastener double-lap-
joint, depending on the ratio of the applied force to the clamping force. The addition of CPC
caused a variation in the failure mechanism and the location of crack initiation. Purry et al.
(reference 19) conducted fatigue tests of a 2024-T351 aluminum alloy in air, distilled water, and
CPC. They found the fatigue crack growth rate in CPC greater than that in distilled water.

Advanced aircraft landing gear and other fracture critical components demand strong and tough
materials to achieve higher performance and greater reliability. In the past, 300M and AF 1410
steels were accepted as the materials for aircraft landing gear because of the high strength
(300M) and the great fracture toughness (AF 1410). In 1990, a new Co-Ni alloy steel,
strengthened with C, Cr, and Mo, AerMet 100, was developed. This steel has an outstanding
combination of high ultimate tensile strength (UTS), 280 — 300 ksi, and high plane strain fracture
toughness (Kic), exceeding 100 ksivVin. The UTS and Kjc are similar to and much greater than
those of 300M steel, 290 ksi and 59 ksi\/in., respectively. On the other hand, they are greater and
less than those of AF 1410 steel, 230 ~ 250 ksi and 150 ksiVin., respectively. Therefore, AerMet
100 steel can replace 300M steel to increase damage tolerance and AF 1410 steel to achieve
weight reduction. This suggests that AerMet 100 steel has a great potential for application to
fracture critical components. A typical example is its use as the material for F/A-18E/F aircraft
landing gear, wingfold transmission, wing pivot pin, wheel bolts, etc. Therefore, AerMet 100
steel is an alloy of interest and importance to the Navy. However, this steel is susceptible to
general and localized corrosion (references 20 and 21) and requires protection against such
corrosion. As one of the protection means, CPC application is considered. However, its
effectiveness and persistency remain to be determined.
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With the above background knowledge, this study was initiated to test, evaluate, and compare
some currently available CPCs with respect to the effectiveness and persistency in preventing,
mitigating, and controlling general corrosion, SCC, and hydrogen embrittlement of AerMet 100
steel. (In this study, the CPC persistency is defined as a characteristic to resist detachment from
the surface it protects or to remain in the environment in sufficient concentration to be protective.
Tts measure is the period of effective corrosion protection.)

EXPERIMENTAL PROCEDURE

SPECIMEN MATERIALS

Base Metal: AerMet 100 steel was selected as the base metal for specimen in this study. The
chemical composition is shown in table 1. :

Table 1: Chemical Composition of AerMet 100 Steel

Element Weight (%)

C 023
Mn 0.03

Si 0.03

P 0.003

S 0.0009
Cr 3.03
Ni ' 11.09
Mo 1.18
Co 13.44
Cu 0.01
Fe Balance

This steel was subjected to a heat treatment: preheating at 593°C (1,100°F) for 1.25 hr in an
argon atmosphere, solution treating at 885°C (1,625°F) for 1.25 hr in an argon atmosphere,
cooling in nitrogen atmosphere, freezing in dry-ice and alcohol of -73°C for 2 hr, and aging at
482°C (900°F) for 5 hr in air. This heat treatment resulted in the hardness of Rc 54 and the

microstructure shown in figure A-1.

CPCs: Eighteen CPCs were employed for the testing. They were classified into three types
according to the mechanism: solvent cutback (MIL-C-16173), water displacing (MIL-C-81309),
and other. The solvent cutback CPCs were Esgard PL-4, Esgard PL-5, Nox-Rust 502, Tectyl
502C, Tectyl 511M, and Tectyl 894. The water displacing ones were Carwell ARS500, Corrosion
X, CRC3-36, and Omega 2775. The others were ACF-50, Boeshield T-9, Break Free SMX,
Dinitol AV8, Fluid Film NAS, LPS2, ZC-010, and ZC-026. They could also be divided into two
groups according to the fluidity, high and low. Those of high fluidity were ACF-50, Boeshield
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T-9, Break Free SMX, Carwell AR500, Corrosion X, CRC 3-36, Dinitol AV8 Esgard PL-4,
Esgard PL-5, LPS2, Nox-Rust 502, Tectyl 511M, ZC-010, and ZC-026. Those of low fluidity
were Fluid Film NAS, Omega 2775, Tectyl 502C, and Tectyl 894.

OPEN CIRCUIT POTENTIAL MEASUREMENT

Open circuit potential (OCP) is an electrochemical parameter of corrosion resistance or
susceptibility and measurable in a corrosion cell, consisting of a specimen electrode and a
reference electrode (saturated calomel electrode (SCE)) in an aqueous electrolyte. In this study,
the specimen electrode was a rectangular flat sheet of AerMet 100 steel, 1.5 in. long, 0.275 in.
wide, and 0.04 in. thick, and its entire surface was coated with Stop-Off Lacquer, except an area
of 0.20 x 0.275 in. on one face. Therefore, the working electrode had an area of 0.055 in.2. The
electrolyte was an aqueous 3.5% NaCl solution of pH 7.3. The specimen and reference electrodes
were connected to the ground terminals of an electrometer, which read the OCP in reference to
the SCE. The bare surface area of a specimen was initially polished, degreased with acetone and
cleaned with distilled water. Subsequently, the area was coated with a CPC, cured for 1 hr at
room temperature, and exposed to the electrolyte during OCP measurement in an apparatus,
shown in figure A-2.

STRESS CORROSION CRACKING TEST

Since the cantilever bend and double cantilever beam SCC tests took a long time, an accelerated
test method of rising step load (reference 22) was employed. The specimen was a square bar of
2.0 x 0.39 x 0.39 in. with a single edge 60 deg V-notch at the mid-length and L-T crack plane
orientation, figure A-3. The specimen was fatigue-precracked to 1/2 thickness in air and then
step-loaded in four-point bending under constant displacement control at room temperature,
while held at a given potential in 3.5% NaCl solution of pH 7.3, in a test machine shown in
figure A-4. The test machine, RSL 1000 SI-Multi-Mode System, included a bending frame, a
tensile loading frame, an electrolyte reservoir, a pump for electrolyte circulation, a SCE, a
platinum counterelectrode, a PC, and a printer. The load was increased at 2% of the ultimate
bending strength each hour until the load dropped. The load drop corresponds to the threshold
stress intensity for stress corrosion crack growth, Kiscc. Its magnitude is quite important, because
the threshold stress corrosion crack length varies as Kiscc’, and calculated as a function of
applied bending moment and crack length, using the following equation:




NAWCADPAX/TR-2002/243

K]scc =0 \/na*F(a/W )
where

Kisce: threshold stress intensity for stress corrosion cracking

G. gross stress = 6M/bW>

M: bending moment = Px

P: applied load

x: moment arm length

b: specimen thickness

W: ‘specimen width

a: crack length

F(a/W) = 1.122 - 1.40(a/W) + 7.33@/W)* - 13.08(/W)’ + 14.0(a/W)*

The precracked specimen was dipped in a CPC, filling the precrack and the notch-tip with the
CPC, and cured for 1 hr at room temperature. Subsequently, the CPC coated specimen was
subjected to the SCC test. During the test, the specimen was the working electrode in a three-
electrode cell with a SCE and a platinum counterelectrode. OCP and electrode potential Vscg =
-1.2 V were applied to generate different amounts of hydrogen at the crack tip of a specimen
under sustained bending. The Kjscc values obtained at OCP and Vscg = -1.2 V are the measures
of resistance to SCC under free corrosion condition and hydrogen embrittlement, respectively.

RESULTS

OPEN CIRCUIT POTENTIAL

During its measurement, the OCP value of a specimen was initially shifted with time in the noble
direction and subsequently stabilized. A typical example of the OCP variation with time is shown
in figure A-5. The least electronegative or most noble one of the stabilized values was taken as
the OCP of a specimen under a given condition. After a period of stabilization, the OCP value
suddenly dropped or shifted in the active direction, indicating the loss of CPC effectiveness with
time. The time from the start of test to the end of OCP stabilization was defined as the CPC
effective period. The OCPs and CPC effective periods are listed with the CPC type and fluidity
in table 2, and the former two are plotted in figure A-6 for the tested CPCs.
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Table 2: OCP and CPC Effective Period

OCP Effective Period Type
CPC V) (hr) MIL-C- Fluidity

No Coating -0.510 - - -

Nox-Rust 502 -0.190 23.3 16173 high
Boeshield T-9 -0.189 21.2 - -

Carwell AR500 -0.168 21.7 81309® high
Dinitol AV8 -0.143 7.8 - high
Break Free SMX -0.130 6.3 - high
ZC-026 -0.085 7.2 - high
Esgard PL-4 -0.066 21.8 16173 high
Tectyl 511M -0.053 7.8 16173 high
Tectyl 894 -0.050 19.5 16173 low
Esgard PL-5 -0.040 > 24 16173 high
Corrosion X -0.038 >24 81309 high
ACF-50 -0.035 18.0 - high
Fluid Film NAS -0.005 21.1 - low
Tectyl 502C -0.030 >24 16173 low
CRC 3-36 -0.020 19.8 81309 high
Omega 2775 -0.020 >24 81309 low
LPS2 -0.008 > 24 - high
ZC-010 +0.030 > 24 - high

NOTES: (1) MIL-C-16173: CPCs, Solvent Cutback, Cold-Application.
(2) MIL-C-81309: CPCs, Water Displacing Ultra-Thin Film.

RESISTANCE TO  STRESS CORROSION  CRACKING _AND HYDROGEN
EMBRITTLEMENT '

The Kiscc values, determined at the OCP (-0.51 V) of the bare specimen and Vgcg =-1.2 V, are
listed in table 3 and plotted in figure A-7 for the specimens bare and coated with CPC.
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Table 3: Kiscc Values of Uncoated and CPC Coated Specimens

- KISCC (kSl\lll‘l) Type
CPC OCP Vseg=-12V MIL-C- Fluidity

No Coating 23.3 14.0 - -

Tectyl 51IM_ 82.7 35.6 161739 high
Dinitol AV8 86.3 40.7 - high
Boeshield T-9 96.2 43.1 - high
CRC 3-36 '103.9 33.5 81309% high
ACF-50 104.6 53.3 - high
LPS2 104.6 40.6 - high
Esgard PL-4 104.9 61.7 16173 high
ZC-026 105.6 88.7 - high
Nox-Rust 502 106.2 84.2 16173 high
Tectyl 894 106.6 42.2 16173 low
Tectyl 502C 106.9 76.2 16173 low
Break Free SMX 107.1 106.8 - high
Fluid Film NAS 107.4 91.4 - low
Esgard PL-5 107.5 86.8 16173 high
Corrosion X 107.6 33.4 81309 high
7C-010 108.7 401 - high
Carwell AR500 108.9 87.3 81309 high
Omega 2775 108.9 79.8 81309 low

NOTES: (1) MIL-C-16173: CPCs, Solvent Cutback, Cold-Application.
(2) MIL-C-81309: CPCs, Water Displacing Ultra-Thin Film.

DISCUSSION

PREVENTION/MITIGATION OF GENERAL CORROSION

It has been known that the more negative the value of OCP, the greater the tendency for or
susceptibility to general corrosion. The largest negative value of OCP, -0.51 V, for the bare
AerMet 100 steel indicates the most pronounced tendency for general corrosion in 3.5% NaCl
solution. On the other hand, with CPC coating, the OCP value became less negative or it was
shifted in the noble direction, evidencing prevention/mitigation of general corrosion. From
table 2, it is clear that CPC ZC-010, having a positive value of OCP, is most effective in general
corrosion prevention among the CPCs tested. The CPC effective period is longest for the CPC
7ZC-010 and shortest for CPC Break Free SMX in 3.5% NaCl solution, as shown in table 2.
Mostly, a less negative or a positive OCP has a longer CPC effective period, indicating more

persistent.
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The effect of CPC fluidity on general corrosion is not so clear from the results obtained. Some
CPCs of lower fluidity seem to be more effective and persistent in prevention/mitigation of
general corrosion.

PREVENTION/MITIGATION OF HYDROGEN EMBRITTLEMENT AND STRESS
CORROSION CRACKING

The hydrogen generation at a crack tip is highly accelerated at the electrode potential -1.2 V,
compared to that at the OCP, in 3.5% NaCl solution. Therefore, the values of Kisce at-1.2 V and
the OCP have been taken as the measures of susceptibility to hydrogen embrittlement and SCC,
respectively.

The Kyscc values were observed to be lower at Vgcg = -1.2 V than at the OCP for the bare and
CPC coated specimens, as shown in table 3 and figure A-7. Furthermore, they increased with
CPC coating 3.6 ~ 4.5 times at the OCP and 2.4 ~ 6.5 times at Vgcg=-1.2 V, indicating the CPC
effectiveness in the prevention/mitigation of SCC and hydrogen embrittlement. Carwell AR500
and Omega 2775 were most effective in prevention/mitigation of SCC and Break Free SMX
most effective in that of hydrogen embrittlement.

The effect of CPC fluidity on Kjscc at OCP and Vg = -1.2 V is not so clearly definable with the
result obtained. Mostly, the CPC of lower fluidity tends to induce a greater value of Kjscc at OCP
or greater effectiveness in prevention/mitigation of SCC.
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CONCLUSIONS

The tested 18 CPCs are effective in prevention/mitigation of general corrosion, SCC, and
hydrogen embrittlement of AerMet 100 steel in 3.5% NaCl solution. However, there is a
difference, large or small, in the effectiveness and persistency among those CPCs.

CPC ZC-010 is most effective and persistent in prevention/mitigation of general corrosion in
3.5% NaCl solution. This CPC is also good for the prevention/mitigation of SCC in 3.5% NaCl

solution.

Carwell AR500 and Omega 2775 are most effective in prevention/mitigation of SCC and Break
Free SMX most effective in that of hydrogen embrittlement in 3.5% NaCl solution.

RECOMMENDATIONS

Shipboard determination of the long term CPC effective period for AerMet 100 steel in service
environment. (In this investigation, only the short term CPC effective period in 3.5% NaCl

solution was determined.)

Investigation of CPC for corrosion prevention/mitigation of the other landing gear steels, such as
300M and 4340. '
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LIST OF ABBREVIATIONS AND FORMULAS

CpPC Corrosion Preventive Compound
IGC Intergranular Corrosion

OCP Open Circuit Potential

SCC Stress Corrosion Cracking

SCE Saturated Calomel Electrode

UTS Ultimate Tensile Strength

Kic Plane Strain Fracture Toughness
Kiscc Threshold Stress Intensity for Stress Corrosion Cracking
Vsce Electrode Potential versus Saturated Calomel Electrode
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Figure A-1: Microstructure of AerMet 100 Steel
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Figure A-2: Apparatus for OCP Measurement
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Figure A-3: Square Bar Specimen with Single Edge V-Notch
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Figure A-4: Rising Step Load Test Machine
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Figure A-5: Typical Example of Variation of OCP with Time
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